AI-Nb-Si (Aluminum-Niobium-Silicon)

V. Raghavan

Recently, [2004Sha] presented a thermodynamic assessment of this system and computed a liquidus projection and two isothermal sections at 1400 and 1000 °C. The available experimental data on the isothermal sections show good agreement with the computed sections.

Binary Systems

The Al-Nb phase diagram [Massalski2] has three intermediate phases: NbAl₃ (DO_{22} , TiAl₃-type tetragonal), Nb₂Al (30-42 at.% Al; DB_b , σ CrFe-type tetragonal), and Nb₃Al (18.6-25 at.% Al; A15, Cr₃Si-type cubic). The Al-Si system is of the simple eutectic type, with the eutectic temperature at 577 °C and the composition at 12.2 at.% Si. The Nb-Si phase diagram [1993Sch, 1995Sch] has the following intermediate phases. Nb₃Si (Ti₃P-type tetragonal), β Nb₅Si₃ (*D*8_{*m*}, W₅Si₃-type tetragonal), α Nb₅Si₃ (*D*8_{*m*}, Cr₅Si₃-type tetragonal), and NbSi₂ (*C*40, CrSi₂-type hexagonal).

Ternary Phases

Two ternary phases have been identified in this system [1961Bru]. Al₂Nb₃Si₅ (denoted τ_1 here) has the C54, TiSi₂-

Table 1 Al-Nb-Si crystal structure and lattice parameter data

Phase	Composition, at.%	Pearson symbol	Space group	Prototype	Lattice parameter, nm
$Al_2Nb_3Si_5\;(\tau_1)$	~20 Al	oF24	Fddd	TiSi ₂	a = 0.8403
	~30 Nb				b = 0.4901
	~50 Si				c = 0.8794
$Al_{3}Nb_{10}Si_{3}\left(\tau _{2}\right)$	~18.75 Al	tI 32	I4/mcm	W ₅ Si ₃	a = 1.016
	~62.5 Nb				c = 0.508
	~18.75 Si				

Fig. 1 Al-Nb-Si computed isothermal section at 1400 °C [2004Sha]

Fig. 2 Al-Nb-Si computed isothermal section at 1000 °C [2004Sha]

type orthorhombic structure, with a small homogeneity range at constant Nb content. The other compound Al₃Nb₁₀Si₃ (denoted τ_2 here and β by [2004Sha]) has the $D8_m$ -type tetragonal structure of β Nb₅Si₃. It is apparently stabilized by Al substituting for Si. It is stable at 1400 °C as a ternary phase, even though the decomposition temperature of β Nb₅Si₃ in the binary system is 1650 °C. τ_2 was not found at 1000 °C by [2003Zha].

Isothermal Sections

The experimental investigations of this system are [1961Bru] (a composite isothermal section at 1400 °C for Nb-rich alloys and at 500 °C for Nb-poor alloys), [1973All] (partial isothermal sections for Nb-poor alloys at 1500 and 1300 °C), [1984Pan] (partial isothermal section at 1500 °C for Nb-rich alloys), [2001Mur] (isothermal section valid between 1600-1200 °C), and [2003Zha] (isothermal section at 1000 °C). For the isothermal sections of [1961Bru], [1973All], and [1984Pan], see [1995Vil]. [2001Mur] used powders of 99.9% Al, 99.8% Nb, and 99.9% Si to prepare samples by compacting and sintering in the temperature range of 1200-1600 °C for 0.3-0.6 ks. They confirmed the presence of the two ternary compounds τ_1 and τ_2 and drew a tentative isothermal section valid for the above temperature range. Crystallographic data for these two ternary phases are given in Table 1. Using a diffusion-multiple approach, [2003Zha] constructed an isothermal section at 1000 °C, which depicts the ternary phase τ_1 . The Al-stabilized $\beta Nb_5 Si_3$ -based ternary phase (τ_2) was not found at this temperature. Tie-lines form between $\alpha Nb_5 Si_3$ and NbAl₃, confirming the results of [1984Pan] and [2001Mur]. The Al solubility in $\alpha Nb_5 Si_3$ is ~8 at.%, with the Al atoms substituting for Si.

[2004Sha] developed a thermodynamic description of this system using the CALPHAD approach. For the Al-Nb and Al-Si systems, the earlier descriptions from the literature were used. The Nb-Si system was reoptimized by [2004Sha], using a term for the excess entropy of mixing of the liquid phase. The computed isothermal sections at 1400 and 1000 °C are redrawn in Fig. 1 and 2. [2004Sha] found good agreement with the experimental data of [1961Bru], [2001Mur], and [2003Zha]. [2004Sha] computed a liquidus projection, which depicts that τ_1 and αNb_5Si_3 form peritectically in the ternary region. There are no experimental data to compare with the computed projection.

References

- 1961Bru: C. Brukl, H. Nowotny, and F. Benesovsky, Study of the Ternary Systems V-Al-Si, Nb-Al-Si, Cr-Al-Si, Mo-Al-Si, and Cr(Mo)-Al-Si, *Monatsh Chemie*, 1961, 92, p 967-980, in German
- **1973All:** C. Allibert, A. Wicker, J. Driole, and E. Bonnier, Study of the Nb-Al-Si System. I. Isothermal Sections at 1500 and 1300 °C, *J. Less Comm. Metals*, 1973, **31**, p 221-228
- **1984Pan:** V.M. Pan, V.I. Latysheva, O.G. Kulik, A.G. Popov, and E.N. Litvinenko, The Al₃Nb-Nb-Nb₅Si₃ Phase Diagram, *Russ. Metall.*, 1984, **4**, p 233-235

Phase Diagram Evaluations: Section II

- **1993Sch:** M.E. Schlesinger, H. Okamoto, A.M. Gokhale, and R. Abbaschian, The Nb-Si (Niobium-Silicon) System, *J. Phase Equilibria*, 1993, **14**(4), p 502-509
- **1995Sch:** M.E. Schlesinger, H. Okamoto, A.M. Gokhale, and R. Abbaschian, The Nb-Si (Niobium-Silicon) System, Addenda, *J. Phase Equilibria*, 1995, **16**(4), p 296
- **1995Vil:** P. Villars, A. Prince, and H. Okamoto, Al-Nb-Si, *Handbook of Ternary Alloy Phase Diagrams*, ASM International, Vol 4, 1995, p 4130-4135
- 2001Mur: T. Murakami, S. Sasaki, K. Ichikawa, and A. Kitahara, Microstructure, Mechanical Properties and Oxidation Behavior of Nb-Si-Al and Nb-Si-N Powder Compacts Prepared by Spark Plasma Sintering, *Intermetallics*, 2001, 9, p 621-627
- 2003Zha: J.C. Zhao, L.A. Peluso, M.R. Jackson, and L. Tan, Phase Diagram of the Nb-Al-Si Ternary System, *J. Alloys Compd.*, 2003, 360, p 183-188
- 2004Sha: G. Shao, Thermodynamic Assessment of the Nb-Si-Al System, *Intermetallics*, 2004, **12**, p 655-664